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Figure 1: Annotated direct volume illustrations of a carp. (a) The swim bladder is highlighted using cutaways and
ghosting. (b) The swim bladder is displayed enlarged.

Abstract

Illustrations play a major role in the education process.
Whether used to teach a surgical or radiologic proce-
dure, to illustrate normal or aberrant anatomy, or to ex-
plain the functioning of a technical device, illustration
significantly impacts learning. Although many speci-
men are readily available as volumetric data sets, par-
ticularly in medicine, illustrations are commonly pro-
duced manually as static images in a time-consuming
process. Our goal is to create a fully dynamic three-
dimensional illustration environment which directly op-
erates on volume data. Single images have the aesthetic
appeal of traditional illustrations, but can be interac-
tively altered and explored. In this paper we present
methods to realize such a system which combines artis-
tic visual styles and expressive visualization techniques.
We introduce a novel concept for direct multi-object
volume visualization which allows to control the appear-
ance of inter-penetrating objects via two-dimensional
transfer functions. Furthermore, a unifying approach
to efficiently integrate many non-photorealistic render-
ing models is presented. We discuss several illustrative
concepts which can be realized by combining cutaways,
ghosting, and selective deformation. Finally, we also
propose a simple interface to specify objects of inter-
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est through three-dimensional volumetric painting. All
presented methods are integrated into VolumeShop, an
interactive hardware-accelerated application for direct
volume illustration.

CR Categories: I.3.3 [Computer Graphics]:
Picture/Image Generation—Display algorithms; I.3.3
[Computer Graphics]: Picture/Image Generation—
Viewing algorithms

Keywords: illustrative visualization, volume render-
ing, focus+context techniques

1 Introduction

A considerable amount of research has been devoted
to developing, improving and examining direct volume
rendering algorithms for visualization of scientific data.
It has been shown that volume rendering can be success-
fully used to explore and analyze volumetric data sets in
medicine, biology, engineering, and many other fields.
In recent years, non-photorealistic or illustrative meth-
ods employed to enhance and emphasize specific fea-
tures have gained popularity. Although we base our pa-
per on this large body of research, our focus is somewhat
different. Instead of using these techniques to improve
the visualization of volume data for common applica-
tions such as diagnosis, we want to combine existing
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2 2 RELATED WORK

and new methods to directly generate illustrations, such
as those found in medical textbooks, from volumetric
data.
Illustrations are an essential tool in communicating
complex relationships and procedures in science and
technology. However, the time needed to complete an
illustration is considerable and varies widely depending
on the experience and speed of the illustrator and the
complexity of the content. The more complicated the
subject matter, the longer it will take the illustrator to
research and solve a complex visual problem. Different
illustration methods and styles can also have a signifi-
cant impact on the time involved in the creation of an
illustration. Therefore, illustrators are increasingly us-
ing computer technology to solve some of these prob-
lems. This, however, is mostly restricted to combining
several manually created parts of an illustration using
image processing software.
Volume rendering has gained some attention in the il-
lustration community. For example, Corl et al. [4]
describe the use of volume rendering to produce im-
ages as reference material for the manual generation
of medical illustrations. We aim to take this develop-
ment one step further. Our goal is to create a fully dy-
namic three-dimensional volume-based illustration en-
vironment where static images have the aesthetic appeal
of traditional illustrations. The advantages of such a sys-
tem are manifold: Firstly, the whole process of creating
an illustration is accelerated. Different illustration meth-
ods and techniques can be explored interactively. It is
easy to change the rendering style of a whole illustration
- a process that would otherwise require a complete re-
drawing. Moreover, the research process is greatly sim-
plified. Provided that the object to be depicted is avail-
able as a volumetric data set, it can be displayed with
high accuracy. Based on this data, the illustrator can se-
lect which features he wants to emphasize or present in
a less detailed way. Illustration templates can be stored
and reapplied to other data sets. This allows for the fast
generation of customized illustrations which depict, for
instance, a specific pathology. Finally, the illustration
becomes more than a mere image. Interactive illustra-
tions can be designed where a user can select different
objects of interest and change the viewpoint.
This paper is subdivided as follows: In Section 2 we
discuss related work. Section 3 gives a conceptual
overview of our approach. In Sections 4, 5, and 6, we
cover in detail the three fundamental building blocks of
our direct volume illustration system, multi-object vol-
ume rendering, illustrative enhancement, and selective
illustration, respectively. Section 7 discusses strategies
and results for an efficient implementation of the pre-
sented concepts. The paper is concluded in Section 8.

2 Related Work

Non-photorealistic or illustrative rendering methods are
a very active field of research. In volume visualization,
Levoy [14] was the first to propose modulation of opac-
ity using the magnitude of the local gradient. This is
an effective way to enhance surfaces in volume render-
ing, as homogeneous regions are suppressed. Based on
this idea, Rheingans and Ebert [19] present several il-
lustrative techniques which enhance features and add
depth and orientation cues. They also propose to lo-
cally apply these methods for regional enhancement.
Using similar methods, Lu et al. [15] developed an in-
teractive volume illustration system that simulates tra-
ditional stipple drawing. Cśebfalvi et al. [5] visualize
object contours based on the magnitude of local gradi-
ents as well as on the angle between viewing direction
and gradient vector using depth-shaded maximum inten-
sity projection. Lum and Ma [16] present a hardware-
accelerated approach for high-quality non-photorealistic
rendering of volume data. Exploring the variety of tra-
ditional illustration styles, selective emphasis of cer-
tain structures is an important technique. The concept
of two-level volume rendering, proposed by Hauser et
al. [8], allows focus+context visualization of volume
data. Different rendering styles, such as direct volume
rendering and maximum intensity projection, are used
to emphasize objects of interest while still displaying
the remaining data as context. Methods for combin-
ing multiple volume data sets have been investigated in
the context of multi-modal data. For instance, Cai and
Sakas [2] discuss different methods for data intermix-
ing in volume rendering. Wilson et al. [24] propose a
hardware-accelerated algorithm for multi-volume visu-
alization. Leu and Chen [13] present a system for mod-
eling scenes consisting of multiple volumetric objects
which is restricted to non-intersecting volumes. The ap-
proach by Grimm et al. [7] uses alternating sampling for
combining multiple volumes in dynamic scenes. An au-
tomated way of performing clipping operations has been
presented by Viola et al. [22]. Inspired by cut-away
views, which are commonly used in technical illustra-
tions, they apply different compositing strategies to pre-
vent an object from being occluded by a less important
object. Konrad-Verse et al. [10] perform clipping using
a mesh which can be flexibly deformed by the user with
an adjustable sphere of influence. Zhou et al. [26] pro-
pose the use of distance to emphasize and de-emphasize
different regions. Lum an Ma [17] use two-dimensional
scalar-based lighting transfer functions to enhance ma-
terial boundaries using illumination. Volume sculpting,
proposed by Wang and Kaufman [23], enables interac-
tive carving of volumetric data. Islam et al. [9] discuss
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Figure 2: Conceptual overview of our direct volume il-
lustration environment.

methods for spatial and temporal splitting of volume
data sets.

3 Overview

The architecture of VolumeShop, our direct volume
illustration system, discriminates between two basic
types of volumes: data volumes and selection volumes.
A data volume stores the actual scalar field, for ex-
ample acquired by a CT scanner. A selection volume
specifies a particular structure of interest in a corre-
sponding data volume. It stores real values in the range
[0,1] where zero means ”not selected” and one means
”fully selected”. While both, multiple data and selec-
tion volumes can be defined, only one pair is active at
a time. Both volumes are stored in a bricked mem-
ory layout using reference counting, i.e., they are sub-
divided into small cubes which are accessed using an
index data structure. Redundant information is not du-
plicated, thus, if two bricks contain the same data, they
are stored in memory only once. The copy-on-write id-
iom is used for handling modifications. This is most
useful for the selection volume due to its sparse nature.
Furthermore, several pieces of meta information (e.g.,
min-max octrees, bounding boxes, and transformations)
are stored for both volumes and updated on modifica-
tion. This allows, for instance, the quick extraction of
tight bounding volumes, which are used to skip empty
space during rendering. At the heart of the system lies
a multi-object volume rendering algorithm which is re-
sponsible for the concurrent visualization of multiple
user-defined volumetric objects. It makes use of illus-
trative enhancement methods and selective illustration
techniques defining the visual appearance of objects. A

conceptual overview of this interaction is given is Fig-
ure 2. In the following sections, we will describe each
of these components in detail.

4 Multi-Object Volume Rendering

When illustrating a volumetric data set, we want to en-
able interactive selection and emphasis of specific fea-
tures. The user should be able to specify a region of in-
terest which can be highlighted and transformed, similar
to common image editing applications. We also want to
permit arbitrary intersections between objects and con-
trol how the intersection regions are visualized.

Our approach identifies three different objects for the
interaction with a volumetric data set: aselectionis a
user-defined focus region, theghostcorresponds to the
original location of the selection, and thebackground
is the remaining volumetric object. A transformationT
can be applied to the selection, e.g., the user can move,
rotate, or scale this object. While the concept of back-
ground and selection is used in nearly every graphical
user interface, ghosts normally exist, if at all, only im-
plicitly. In the context of illustration, however, such an
explicit definition of a ghost object is advantageous.

We assume a scalar-valued volumetric functionfV and a
selection functionfS, which are defined for every point
p in space. The selection functionfS has a value in[0,1]
which indicates the degree of selection. Based on this
degree of selection we define three fuzzyselection sets
SS, SG, andSB (see Figure 3, first row) with their respec-
tive membership functionsµS, µG, andµB:

µSS(p) = fS(T(p))
µSG(p) = fS(p)
µSB(p) = 1− fS(p)

(1)

whereT is the transformation that has been applied to
the selection.

To control the appearance of our three objects, selec-
tion, ghost, and background, we define color and opacity
transfer functions based on the values offV , which we
denotecS, αS, cG, αG, and,cB, αB. We use the opacity
transfer functions to define the membership functions of
threevolume sets, VS, VG, andVB (see Figure 3, second
row):

µVS(p) = αS( fV(T(p)))
µVG(p) = αG( fV(p))
µVB(p) = αB( fV(p))

(2)

For each of our three objects we can now define an
ob jectsetas the intersection between the corresponding
selection and volume set (see Figure 3, third row):
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Figure 4: Using intersection transfer functions to illustrate implant placement in the maxilla. As the selection
(green) is moved into the ghost (faint red), the intersection transfer function causes it to be displayed in blue.

S = SS∩VS
G = SG∩VG
B = SB∩VB

(3)

These sets correspond to our basic objects selection,
ghost, and background. Thus, in the following we will
use these terms to refer to the respective object sets and
visa versa. For volume rendering, we now need a way to
determine the color and opacity at a pointp in space de-
pending on its grade of membership in these sets. We as-
sumen setsX1,X2, . . . ,Xn and their corresponding color
transfer functionsc1,c2, . . . ,cn. We can then define the
color at a pointp as a weighted sum using the respective
membership functions as weights:

c(p) =

n
∑

i=1
ci (p)·µi (p)

n
∑

i=1
µi (p)

(4)

As the membership functions of our sets are based on
the opacity and the degree of selection, we define the
opacity atp as the grade of membership in the union of
all sets:

α(p) = µX1∪X1∪...∪Xn(p) (5)

Using Equations 4 and 5 for our three setsS, G, andB
and the color transfer functionscS, cG, andcB leads to a
meaningful combination of colors and opacities when
used in direct volume rendering. However, we want

to provide the user with additional control over the ap-
pearance of regions of intersection. Frequently, for ex-
ample, illustrators emphasize inter-penetrating objects
when they are important for the intent of the illustration.

To achieve this we first need to identify potential regions
of intersection. According to our definitionsB∩G = /0,
i.e., background and ghost never intersect. The selec-
tion, however, can intersect either the background, the
ghost, or both. Thus, we direct our attention to the sets
GS= G∩S andBS= B∩S . For every point which is
a member of one of these sets, we want to be able to
specify its appearance using special intersection trans-
fer functions for color and opacity. Thus, we define two
new setsVGS andVBS with the following membership
functions:

µVGS(p) = αGS( fV(p), fV(T(p))
µVBS(p) = αBS( fV(p), fV(T(p))

(6)

The intersection transfer functions are two-dimensional.
Their arguments correspond to the value of volumetric
function fV at pointp and atT(p), the value of the func-
tion at p transformed by the selection transformationT.
Based on these two sets, we now define two alternative
setsĜSandB̂Sfor the regions of intersection:

µĜS(p) =

{
0 µGS(p) = 0

µSG∩SS∩VGS(p) otherwise

µB̂S(p) =

{
0 µBS(p) = 0

µSB∩SS∩VBS(p) otherwise

(7)
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Figure 3: Overview of the basic multi-object combina-
tion process for background (left column), ghost (mid-
dle column), and selection (right column): the intersec-
tion between selection sets (first row) and volume sets
(second row) results in object sets (third row) which are
then combined.

To evaluate the combined color and opacity at a point
p in space now, we use Equation 4 and 5 with the sets
S− (ĜS∪ B̂S), G− ĜS, B− B̂S, ĜS, andB̂Sand the re-
spective color transfer functionscS, cG, cB, cGS, andcBS.
We use the standard definitions for fuzzy set operators
where the minimum operator is used for the intersection
and the maximum operator for the union of two fuzzy
sets [25].

The intersection transfer functions can be used to con-
trol the color and opacity in the region of intersection
between two objects based on the scalar values of both
objects. In our implementation we provide a default set-
ting which is a opacity-weighted average between the
one-dimensional color transfer functions of the two re-
spective objects (background and selection, or ghost and

selection). Further, we provide presets where the opac-
ity is computed from the one-dimensional opacity trans-
fer functions by one of the compositing operators de-
rived by Porter and Duff [18]. The color can be specified
arbitrarily. Additionally, the user can paint on the two-
dimensional function using a gaussian brush to highlight
specific scalar ranges. Figure 4 shows an example where
the ghost/selection intersection transfer function is used
to illustrate the placement of an implant in the maxilla.
This kind of emphasis is not only useful for the final
illustration, but can act as a kind of implicit visual colli-
sion detection during its design.

While we use the concept presented in this section
for concurrent visualization of multiple objects derived
from the same data set, this restriction is not necessary
- objects could also be derived from multiple data sets.
The approach could be straight-forwardly used for gen-
eral multi-volume visualization. However, we note that
the use of intersection transfer functions might not be
feasible in a setup consisting of a large number of ob-
jects. Increasing the number of objects will quickly lead
to a combinatorial explosion in the number of possible
regions of intersection. In such a case the objects for
which such a fine-grained control is required should be
limited by application-specific constraints.

5 Illustrative Enhancement

Illustration is closely related to non-photorealistic ren-
dering methods, many of which attempt to mimic artis-
tic styles and techniques. In this section we present
a simple approach which integrates several presented
models and is thus well-suited for a volume illustra-
tion system. Most illumination models use informa-
tion about the angle between normal, light vector and
viewing vector to determine the lighting intensity. In
volume rendering, the directional derivative of the vol-
umetric function, the gradient, is commonly used to ap-
proximate the surface normal. Additionally, the gradient
magnitude is used to characterize the ”surfaceness” of a
point; high gradient magnitudes correspond to surface-
like structures while low gradient magnitudes identify
rather homogeneous regions. Numerous distinct ap-
proaches have been presented that use these quantities
in different combinations to achieve a wide variety of
effects. Our goal is to present a computationally inex-
pensive method which integrates many of these models.

We define a two-dimensional lighting transfer function.
The arguments of this function are the dot product be-
tween the normalized gradient and the normalized light
vector and the dot product between normalized gradient
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and the normalized half-way vector. A two-dimensional
lookup table stores the ambient, diffuse, and specular
lighting contributions for everŷN · L̂ andN̂ · Ĥ pair. Ad-
ditionally, a fourth component used for opacity enhance-
ment is stored.

Shading is then performed by using these four values in
the following way to compute the shaded colorcs and
shaded opacityαs:

cs = (sa(N̂ · L̂, N̂ · Ĥ)+sd(N̂ · L̂, N̂ · Ĥ)) ·cu +ss(N̂ · L̂, N̂ · Ĥ)
αs = (min(1,sα (N̂ · L̂, N̂ · Ĥ)+(1−|N|)))−1 ·αu

(8)

wherecu andαu are the unshaded color and opacity,N̂
is the normalized gradient,L̂ is the normalized light vec-
tor, Ĥ is the normalized half-way vector, andsa, sd, and
ss are the shading transfer function components for am-
bient, diffuse, and specular lighting contributions. The
opacity enhancement component of the transfer function
denoted bysα is combined with the gradient magnitude
|N| to modulate the unshaded opacity value (we assume
that the gradients have been scaled such that|N| is be-
tween zero and one).

We use the terms ”ambient”, ”diffuse”, and ”specular”
to illustrate the simple correspondence in case of Phong-
Blinn lighting. However, the semantics of these compo-
nents are defined by the model used for generation of
the lighting transfer function. Thus, a lighting transfer
function might use these terms to achieve effects com-
pletely unrelated to ambient, diffuse, and specular light-
ing contributions. In a similar matter, when examining
Equation 8 it can be seen that the ambient and diffuse
components could be combined without loss. We only
choose to keep them separate for the sake of consistency
and simplicity.

It is straight-forward to use this kind of lighting trans-
fer function for common Phong-Blinn lighting. How-
ever, many other models can also be specified in this
way and evaluated at constant costs. For example, con-
tour lines are commonly realized by using a dark color
where the dot product between gradient and view vec-
tor N̂ · V̂ approaches zero, i.e., these two vectors are
nearly orthogonal. If we havêN · L̂ and N̂ · Ĥ with
Ĥ = L̂+V, thenN̂ · V̂ = N̂ · L̂ + 2(N̂ · Ĥ). We can thus
create a lighting transfer function where we set am-
bient, diffuse and specular components to zero where
N̂ · L̂ ≈ −2(N̂ · Ĥ). One advantage of this approach is
that artifacts normally introduced by using a threshold
to identify contour lines can be remedied by smooth-
ing them in the lighting transfer function (e.g., using a
gaussian) with no additional costs during rendering. Us-
ing the opacity enhancement component of the lighting

(a) (b)

(c) (d)

Figure 5: The same data set rendered with four different
lighting transfer functions (the lighting transfer function
for each image are displayed in the lower left corner
- ambient, diffuse, specular, and opacity enhancement
are encoded in the red, green, blue, and alpha chan-
nel, respectively). (a) Standard Phong-Blinn lighting.
(b) Phong-Blinn lighting with contour enhancement. (c)
Cartoon shading with contour enhancement. (d) Metal
shading with contour enhancement.

transfer function also allows for a meaningful combi-
nation of contour enhancement and transparency: the
opacity of contour regions is increased, but only where
the gradient magnitude is high. Without taking the gra-
dient magnitude into account opacity enhanced con-
tour lines would lead to a cluttered image in translu-
cent views. This is due to rapidly varying gradient di-
rections in nearly homogeneous regions. Pure gradient-
magnitude opacity-enhancement without directional de-
pendence just requires a constantsα . Other methods,
such as cartoon shading [3] or metal shading [6] can be
realized straight-forwardly and combined with effects
like contour enhancement. Figure 5 shows an image
rendered using four different lighting transfer functions
(standard Phong-Blinn lighting, Phong-Blinn lighting
with contour enhancement, cartoon shading with con-
tour enhancement, and metal shading with contour en-
hancement). Figure 6 illustrates how separate lighting
transfer functions for background, ghost, and selection
can be used to put emphasis on one of these objects.
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Figure 6: Using different lighting transfer functions
for background, ghost, and selection. The background
(lower part of the head) and the selection (upper part of
the head) use cartoon shading, while the ghost (thresh-
old is set to display the skull) is illuminated using metal
shading. The selection has been moved to achieve an
effect similar to volume splitting [9].

6 Selective Illustration

In this section we present techniques for selective il-
lustration. Selective illustration techniques are methods
which aim to emphasize specific user-defined features
in a data set using visual conventions commonly em-
ployed by human illustrators. They are closely related
to focus+context approaches frequently found in infor-
mation visualization. The general idea is to highlight the
region of interest (focus) without completely removing
other information important for orientation (context).

6.1 Volume Painting

Volume Segmentation, i.e., the identification of indi-
vidual objects in volumetric data sets is an area of ex-
tensive research, especially in medical imaging appli-
cations. Approaches range from very general methods
to algorithms specifically designed to identify certain
structures. An important criterion is the exactness of the
segmentation, i.e., the ratio between correctly and incor-
rectly classified voxels. In practise, due to limited infor-
mation, this criterion is difficult to measure. For volume

illustration, however, voxel-exact classification of fea-
tures is not necessarily of primary concern. Rather, it
is important that the illustrator can quickly and easily
add and remove structures of interest to and from the
selection. Furthermore, as our approach is based on a
fuzzy selection function, this fuzzyness should be also
supported by the selection definition method. For this
reason, we use a simple three-dimensional volumetric
painting approach for selection definition. When the
user clicks on the image, a ray is cast from the cor-
responding position on the image plane into the data
volume. At the first non-transparent voxel that is in-
tersected by the ray, a volumetric brush (e.g., a three-
dimensional gaussian) is ”drawn” into the selection vol-
ume for each non-transparent voxel within the bound-
ing box of the brush. Different composition methods
can be chosen, for example addition (i.e., actual paint-
ing) or subtraction (i.e., erasing). We have found that
this approach is intuitive and capable of achieving good
results in a short time: the user specifies a transfer func-
tion which displays the object of interest and then just
paints on it until it is fully selected. However, it is
clear that a real-world application should also include
more sophisticated algorithms. Just like image editing
software normally supports manual and semi-automatic
selection mechanisms (e.g., the common ”magic wand
tool”), a volume illustration system should include vol-
ume painting as well as region growing or watershed
segmentation.

6.2 Cutaways and Ghosting

Cutaways (also referred to as cut-away views) are an im-
portant tool commonly employed by illustrators to dis-
play specific features occluded by other objects. The
occluding object is cut out to reveal the structure of in-
terest. Viola et. al. [22] introduced importance-driven
volume rendering, a general framework how to deter-
mine which object is to be cut by using an importance
function. Our simplified three-object setup allows to de-
fine this importance statically, which enables us to skip
costly importance compositing and thus allows for an
efficient implementation. Cutaways are only performed
on the background and can be independently defined for
ghost and selection.

Ghosting refers to a technique which is frequently used
in conjunction with cutaways. Instead of removing the
occluding regions completely, opacity is selectively re-
duced in a way which attempts to preserve features such
as edges. This tends to aid mental reconstruction of
these structures and generally gives a better impres-
sion of the spacial location of the object in focus. In
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(a) (b)

(c) (d)

Figure 7: Different degrees of ghosting - from no ghost-
ing (a) to full cutaway (d).

our approach, the user can smoothly control the degree
of ghosting from no ghosting (opacity is not reduced
at all) to full cutaway view (occluding structures are
completely suppressed) as shown in Figure 7. This is
achieved by combining a user-defined ghosting factor
with the opacity-enhancement component of the light-
ing transfer function. Thus, for a lighting transfer func-
tion which enhances the opacity of contours, increas-
ing the degree of ghosting will preserve these regions.
Again, in the context of importance-driven volume ren-
dering this approach can be seen as a special level-of-
sparseness which is designed to closely correspond to
traditional illustration techniques.

6.3 Visual Conventions and Interaction

As the selection can undergo a user-defined transforma-
tion there are a number of possibilities how to combine
the effects of transfer functions, cutaways and ghosting,
and spacial displacement. In its simplest form, this can
be used to illustrate the removal or insertion of an object.
Furthermore, ”magic views” on a structure of interest
can be generated, where the object is displayed using a
different degree of detail, orientation, or rendering style.

Illustrators commonly employ certain visual conven-
tions to indicate the role of an object in their works. In
our illustration environment, we provide the user with

Figure 8: Illustrating a tumor resection procedure using
an automatically generated arrow.

Figure 9: Detailed depiction of a hand bone using a fan.

different kinds of visual enhancements inspired by these
conventions:

Boxes: For three-dimensional interaction, bounding
boxes provide useful cues on the position and ori-
entation of an object if occlusions are handled cor-
rectly. The display of bounding boxes is most use-
ful when the selection is arranged during the design
of an illustration. For the presentation of the illus-
tration, however, the bounding boxes can be dis-
tracting and potentially occlude important details.

Arrows: Arrows normally suggest that an object actu-
ally has been moved during the illustrated process
(e.g., in the context of a surgical procedure) or that
an object needs to be inserted at a certain location
(e.g., in assembly instructions). Analogously, we
use arrows to depict the translation between ghost
and selection, i.e., the arrow is automatically drawn
from the object’s original position to its current lo-
cation. To avoid very short arrows in case the se-
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lection and the ghost project to nearby positions in
image space, we use the screen-space depth differ-
ence to control the curvature of the arrow. This
leads to the kind of bent arrows frequently found
in illustrations. Figure 8 shows an example for the
use of arrows.

Fans: A fan is a connected pair of shapes, such as rec-
tangles or circles, used to indicate a more detailed
or alternative depiction of a structure. It can be
easily constructed by connecting the screen-space
bounding rectangles of ghost and selection. In
combination with cutaways and ghosting, this type
of enhancement can lead to very expressive visual-
izations, depicting, for example, two different rep-
resentations of the same object (see Figure 9).

Apart from controlling visual appearance, it is useful to
provide different interaction types based on the role of
an object in the illustration. A selection can be in one of
three states which influence the way it behaves in rela-
tion to the remaining scene:

Integrated: The selection acts as a full part of the
three-dimensional scene. This is intuitive, but has
certain drawbacks. For example, when the view-
point is rotated, the selection’s movement is depen-
dent on its distance to the origin. It can easily move
out of the viewport or can be occluded by other ob-
jects.

Decoupled: The opposite to the integrated approach is
to fully decouple the selection from the scene. It
can be independently manipulated and is not af-
fected by the viewing transformation. This is, for
instance, useful when it is required to depict an ob-
ject at a specific orientation regardless of the view-
ing transformation.

Pinned: A useful hybrid between the two modes above
is to allow the object to be pinned to its current
position in image space. Its on-screen location re-
mains static, but it is still affected by rotations.
A rotation of the viewpoint causes the same rela-
tive rotation of the object. For example, this can
be used to generate a special view which always
shows the part of an object facing away from the
viewer in the background object.

6.4 Annotations

Hand-made illustrations in scientific and technical text-
books commonly use labels or legends to establish a co-
referential relation between pictorial elements and tex-
tual expressions. As we allow multiple selections to be

defined, annotations are important for both, recreating
the appearance of static illustrations, and simplifying
orientation in our interactive environment. For placing
annotations we need their screen-space bounding rec-
tangles and anchor points. We use the following guide-
lines to derive a simple layout algorithm for optically
pleasing annotation placement (for a more complete de-
scription of annotation layout styles and guidelines refer
to [1]):

• Annotations must not overlap.

• Connecting lines between annotation and anchor
point must not cross.

• Annotations should not occlude any other struc-
tures.

• An annotation should be placed as close as possible
to its anchor point.

In many textbook illustrations, annotations are placed
along the silhouette of an object to prevent occlusions.
We can approximate this by extracting the convex hull
of the projections of the bounding volumes of all visi-
ble objects. The resulting polygon is radially parame-
terized. Thus, the position of an annotation is defined
by one value in the range[0,1]. Based on its location
in parametric space, a label is always placed in such a
way that it remains outside the convex hull. All annota-
tions are initially placed at the position along the silhou-
ette polygon which is closest to their respective anchor
point. We then use a simple iterative algorithm which
consists of the following steps:

1. If the connection lines of any two labels intersect,
exchange their positions.

2. If exchanging the positions of two labels brings
both closer to their anchor points, exchange their
positions.

3. If a labels overlaps its predecessor, it is moved by
a small delta.

These three steps are executed until either all intersec-
tions and overlaps are resolved or the maximum num-
ber of iterations has been reached. Remaining intersec-
tions and overlaps are handled by disabling annotations
based on priority. We use the screen-space depth of the
anchor point to define these priorities, i.e., annotations
whose reference structures are farther away will be dis-
abled first. While this basic algorithm does not result
in an optimal placement, it is very fast for a practical
number of labels (usually no more than 30 annotations
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Figure 10: Annotated illustration of a human foot - the
current selection is highlighted.

are used in a single illustration) and generally leads to a
visually pleasing layout. Due to the initialization of an-
notation locations at the position on the silhouette clos-
est to the anchor point, the annotations generally move
smoothly in animated views. Discontinuities only oc-
cur when intersections and overlaps need to be resolved.
As some annotated structures might not be visible from
every viewpoint, we use the screen-space depth of the
anchor point to control the opacity of the connection
line between anchor point and label. Figure 10 shows
an annotated illustration of a human foot highlighting
the current selection.

7 Implementation

In this section, we will briefly describe the implemen-
tation of our algorithm for illustrative multi-object vol-
ume rendering with support for cutaways and ghosting.
It was integrated into VolumeShop, a prototype applica-
tion for interactive direct volume illustration (see Fig-
ure 11). VolumeShop has been implemented in C++
and Cg using OpenGL. While we have clear indica-
tions that the current version of NVidia’s Cg compiler
does not produce optimal code in all circumstances,
we have refrained from hand-optimizing assembly lan-
guage shaders for the sake of portability.

It is possible to implement all presented methods in one
single rendering pass. However, this would introduce
considerable computational overhead, as, for example,
multi-object compositing would have to be performed
for every sample point even if it only intersects one

Figure 11: Screenshot of VolumeShop during operation.

object. While current graphics hardware supports dy-
namic branching, it still introduces severe performance
penalties. It is therefore favorable to choose a multi-
pass approach. A well-established strategy is to use
the early-z culling capability of modern hardware for
computational masking. Employing this approach we
can identify those regions where less work has to be
performed and use simplified vertex and fragment pro-
grams in these areas.

We can quickly extract bounding volumes for back-
ground, ghost, and selection by traversing our hierar-
chical data structures and rendering the corresponding
geometry. Initially, we set up two depth maps by render-
ing the bounding volumes of ghost and selection each
into a separate depth texture with the depth test set to
LESS. These depth maps are used in the subsequent
rendering passes to discard fragments, thus emulating
a two-sided depth test. For smooth cutaways we addi-
tionally filter these depth maps using a large kernel.

In principle, our implementation comprises three vol-
ume rendering passes using three sets of vertex and frag-
ment programs with increasing complexity:

Background pass: The first volume rendering pass is
responsible for the background object. We set
the depth test to LESS and render the bounds
of the background object into the depth buffer.
Depth buffer writes are then disabled to take ad-
vantage of early-z culling and the depth test is set to
GREATER. Thus, empty space up to the fist inter-
section point of a viewing ray with the background
bounding volume is skipped without executing the
fragment program. We then render view-aligned
slices in back-to-front order and perform shading
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in a fragment program. Shadow mapping hard-
ware is used to discard fragments whose depth is
greater or equal than the corresponding value of
the ghost or selection depth texture. Thus, regions
which might contain the ghost and/or the selection
are effectively cut out from the background object.

Ghost pass: In the second volume rendering pass we
start by clearing the depth buffer and rendering the
bounding volume of the ghost object with the depth
test set to GREATER. Then depth buffer writes are
disabled again and the depth test is set to LESS.
The fragment program needs to perform shading
for background and ghost. Fragments whose depth
value is greater or equal than the corresponding
value of the selection depth map are discarded. If
cutaways are enabled then the opacity of the back-
ground is additionally modulated by a user-defined
ghosting factor for fragments whose depth value is
greater or equal than the corresponding value of the
ghost depth map.

Selection Pass: For the final pass we render the selec-
tion bounds into the cleared depth buffer with the
depth test set to GREATER. Depth buffer writes
are then disabled again and the depth test is set to
LESS. The selection transformation is handled by
passing in two sets of texture coordinates: one un-
modified set for background and ghost, and an ad-
ditional set for the selection which is transformed
accordingly. In the fragment program we need
to perform shading for background, selection, and
ghost. We also handle background/selection and
ghost/selection intersections by using the colors
and opacities defined in the intersection transfer
functions. For cutaways, the background’s opac-
ity is additionally modulated for fragments whose
depth value is greater or equal than the correspond-
ing values in one or both of the depth maps.

For handling of intersections with opaque geometry
an additional depth map is generated before the back-
ground pass. The color contributions of the geometry
are blended into the frame buffer. The depth texture
is used in all three rendering passes to discard frag-
ments which are occluded by geometry. Visual enhance-
ments are either displayed as real three-dimensional ob-
jects with correct intersection handling (e.g., bounding
boxes) or as overlays (e.g., fans).

As larger selections will require more fragments to be
processed in the more complex rendering passes, the
performance of the presented algorithm mainly depends
on the size of the selection. Thus, if no selection has

selection frame rate
none 8.28
163 8.04
323 6.81
643 4.86

Table 1: Performance results for rendering 444 slices of
the UNC CT head (2563) using different selection sizes.

been defined we achieve almost the same frame rates
as conventional slice-based volume rendering due to the
effectivity of early-z culling. Selections, by definition,
typically will be rather small compared to the back-
ground. Additionally, if we can determine that the se-
lection does not intersect background or ghost (e.g., by
means of a simple bounding box test) we execute a sim-
plified fragment program in the selection pass.

For obtaining performance results we used the follow-
ing setup: The chosen data set was the standard UNC
CT head (2563) rendered using

√
3·2562 ≈ 444 slices

- a realistic number for high-quality rendering. The se-
lection was set to a cube sized 163, 323, and 643 voxels
centered in the middle of the data set. The selection
transformation was set to identity. The transfer func-
tions for background, ghost, and selection were set to
zero opacity for values up to 1228 and to an opacity of
one for all values above. The frame rates given in Ta-
ble 1 are average figures for three 360◦ rotations about
the x-,y-, and z-axis for a 5122 viewport. An Intel Pen-
tium 4 3.4 GHz GPU and a NVidia GeForce 6800 GT
GPU were used to obtain these measurements.

These results indicate that our approach is well-suited
for high-quality rendering in interactive applications. In
the future, we expect to further increase the rendering
performance by integrating early ray termination as pro-
posed by Kr̈uger and Westermann [11].

8 Conclusion and Future Work

In this work, we introduced the general concept of a
direct volume illustration environment. Based on this
concept, VolumeShop, an interactive system for the
generation of high-quality illustrations from volumet-
ric data, has been developed. An intuitive three-object
setup for the interaction with volumetric data was dis-
cussed. We contributed a general technique for multi-
object volume rendering which allows for emphasis of
intersection regions via two-dimensional transfer func-
tions. Furthermore, we introduced a unified approach
to efficiently integrate different non-photorealistic illu-
mination models. Techniques for selective illustration
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were presented which combine cutaways and ghosting
effects with artistic visual conventions for expressive vi-
sualization of volume data. In addition, we proposed
volume painting as an interactive selection method and
presented an algorithm for automated annotation place-
ment. A hardware-accelerated volume renderer was de-
veloped which combines the presented techniques for
interactive volume illustration.

While we believe that the results achieved with our pro-
totype system are promising, a lot of work remains to
be done. In the future we aim to integrate further artis-
tic styles and techniques for the creation of aesthetically
pleasing illustrations [20]. We also want to investigate
methods for automatically guiding viewpoint specifica-
tion [21] and light placement [12]. Finally, improved in-
teraction metaphors and techniques could significantly
contribute to the usability of a volume illustration sys-
tem.
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[5] B. Cśebfalvi, L. Mroz, H. Hauser, A. K̈onig, and
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